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SUMMARY 

Numerical solutions to the three-dimensional, unsteady, incompressible Reynolds-averaged Navier-Stokes 
equations have been obtained for bubble-type vortex breakdown. Two different turbulence models were employed: 
(1) standard K-E and (2) an explicit, regularized algebraic Reynolds stress model. Results are computed at a 
Reynolds number of 10,000. The algebraic Reynolds stress model produced a breakdown bubble with a larger 
length-to-diameter ratio than did the K--E model. Breakdown also occurred at lower levels of adverse pressure 
gradient for the algebraic stress model than for the K--E model. In each case single-cell breakdown structures 
resulted. This is contrasted with numerical calculations for laminar breakdown which reveal the existence of 
complex multicell bubble breakdown structures. 
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1. INTRODUCTION 

The vortex breakdown phenomenon has been widely studied. This is due in part to important 
technological applications of vortex breakdown. For instance, breakdown has been proposed as a 
possible mechanism for accelerating the destruction of wing tip vortices, which may limit aircraft 
traffic at major airports. Breakdown is also an important consideration for fighter-type aircraft, in that 
the handling characteristics of the aircraft may be drastically altered owing to the occurrence of 
breakdown. These problems have provided strong motivation for the study of breakdown by the 
aerodynamics community. An additional application of breakdown is in the area of combustion. Here 
the breakdown acts as a fluid dynamic flame holder, serving to stabilize the flame and to recirculate hot 
gases within the combustor primary region.' 

Although the above-mentioned applications invariably involve turbulent flows, owing to the 
complexity of the problem, theoretical studies have emphasized the laminar case. However, after 35 
years of study no consensus regarding the physical mechanism responsible for the initiation of 
breakdown exists. The sheer volume of work prohibits an extended discussion here. The reader is 
referred to comprehensive reviews by Hall2 and Leibovich.' 
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As with the theoretical studies, the majority of the experimental works have considered laminar 
vortex breakdown. The primary experimental tool has been flow visualization for breakdown occurring 
within straight or slightly diverging tubes4" or over delta wings6 Additional studies have utilized 
LDV7 or PTV8 measurements to provide information concerning the internal structure of bubble- and 
spiral-type breakdowns. These (and other) works reveal that as many as seven distinct types of laminar 
breakdown exist, although the most commonly observed are the spiral and bubble forms. 
Unfortunately, experimental results under high-Reynolds-number turbulent flow conditions performed 
in similar tube-and-vane-type experimental apparatus are not available. However, a large number of 
experimental studies from the combustion community exist concerning the occurrence of breakdown 
for swirling flows subject to a sudden expansion.'-" These flows are intended to be representative of 
the (cold flow) turbulent, swirling flows generated within prototypical gas turbine can-type combustion 
chambers. 

The majority of the numerical works concerning vortex breakdown have concentrated on low- 
Reynolds-number, laminar, a~isymmetr ic '~"~ or three-dimen~ional '~ '~ flows. Recent results for 
laminar three-dimensional vortex breakdown' provide details regarding the structure of four distinct 
forms of breakdown-helical, double-helix, spiral and bubble type. These results were fhrther 
presented in video format in Reference 20. Thus a primary contribution of the numerical works has 
been to reveal details of the internal structure of the various forms of breakdown. 

Numerical calculations for turbulent vortex breakdown (or breakdown-like-flows) have been 
motivated by applications in gas turbine combustion. Here the structure of the breakdown is of 
considerable importance and the accuracy of the turbulence models is consequently an important issue. 
Representative work includes that of References 21-23. In these studies either K--E or differential 
Reynolds stress models were employed. The combustor geometry and associated flow fields may 
become quite complex, especially when features such as dilution jets are ~ o n s i d e r e d . ~ ~  

In the present work we consider the effect of turbulence on vortex breakdown, isolated from the 
complicating factors considered in previous combustor-related studies. Numerical solutions for 
turbulent, three-dimensional, bubble-type breakdown in an unbounded domain subject to a 
decelerating freestream axial velocity are obtained. It is well known that linear two-equation models 
do not inherently contain a mechanism capable of capturing the sensitivity of turbulence stresses to 
swirl-induced body forces. Second-order Reynolds stress closures (either algebraic or differential) 
represent the lowest level of closure which inherently accounts for these effects. Thus results are 
computed using two separate turbulence models: (1) a linear K--E model and (2) a recently developed 
explicit, regularized algebraic Reynolds stress For comparative purposes, results are also 
presented for laminar breakdown at a Reynolds number of 200. The algorithm is an extension of that 
used in the authors' previous studies of vortex to include the effects of turbulence. 

2. NUMERICAL METHOD 

The three-dimensional incompressible Reynolds-averaged Navier-Stokes equations are solved 
numerically using the second-order-accurate (in time and space) velocity-vorticity formulation of 
Gatski et 0 1 . ~ ~  The non-dimensional governing equations in terms of mean velocity, U = U(X, t ) ,  and 
mean vorticity, = c( i ,  t ) ,  variables are given by 

V . U = O ,  
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v - r = o .  (2b) 
Velocities have been non-dimensionalized by the freestream velocity and vorticities have been non- 
dimensionalized by Q defined as the solid body rotation rate obtained from R = lim,,o( Vo/r).  The 
length scale 1 is taken as the vortex core radius at inflow. In addition, Re is the Reynolds number (Ul/v) 
and Ro is the Rossby number defined as UllR. The Reynolds stresses are represented by rii Since the 
process of time averaging has introduced additional unknowns, additional equations must be 
introduced to close the system. In the present work two different closures are considered: (1) a standard 
K-E model and (2) a regularized algebraic Reynolds stress model (ARSM).” 

For the K-E model the Reynolds stresses are expressed in terms of the mean velocity gradients as 

(3) 7, = iK6ij - 2 ~ & ,  

where 3, is the rate-of-shear tensor, v, = C,K2/-E is the turbulent viscosity and K is the turbulence 
kinetic energy. 

The derivation of algebraic Reynolds stress models is based on a production-equals-dissipation 
equilibrium hypothesis in which Reynolds stress convective and transport effects may be neglected. 
While previous algebraic models have been implicit in nature, the model used herein is explicit. In 
addition, the model is regularized so that it remains well-behaved even in the presence of large strain 
rates. The algebraic Reynolds stress model is written in the form25 

7.. - 2K6.. - 6(1 + q2)ulK 
3 + q2 + 6c2q2 + 6c2 ‘ 1 - 3  ‘1 

where a1 = (C2 - $)l(C3 - 2) and 9, Up, 

s,; 

y.; 

p; + (sp, w; + so wo. - 2 sis; - $s;/s;/6,)], 
Jk J ( (4) 

q and c are defined as 

= i g q 2  - C3)3,, 

= 4gq2 - C4)0,, 

Here 0, is the rate-of-rotation tensor and 7 = KI-E. Values of C2 = 0.36, C3 = 1-25, C4 = 0.40 and 
g = 0.233 have been assigned to the constants. These values were chosen to provide consistency with 
the second-order closure of Speziale et Note that the ARSM formally constitutes a two-equation 
turbulence model, equivalent to the K--E model when (4 )  is linearized with respect to the mean velocity 
gradients. (In this case C, = 0.1 13.) 

For each model the distributions of turbulence kinetic energy and turbulence dissipation rate are 
required and are obtained by solving the following general forms of modelled transport equations for K 
and E :  
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where vt = C,K21&, C, = 0.09, oK = 1-0, oe = 1-3 and C,, = 1-44. In addition, C,, = 1-83 for the 
ARSM, while C,, = 1.92 for the K--E model. 

A brief discussion of the solution procedure follows. The method is fully described in Reference 26. 
The div-curl equations form the basis of the solution of the velocity vector, given the vorticity vector at 
time n, along with the velocity boundary conditions. The vorticity is advanced from time level n to 
n + 1 using (2a). The solenoidal condition on the vorticity (2b) is enforced to ensure that the initial 
solenoidal vorticity field (which may be contaminated owing to round-off errors, truncation errors or 
errors introduced through outflow boundary conditions) remains solenoidal for all time. The 
computational domain is divided into a region of rectangular elements. Velocities, which are required 
at the centres of cell faces, are averages of box variables defined at the vertices of each element. 
Vorticity is also defined at the centres of element faces and represents an average value over a face. 

Using the initial distribution of vorticity, the computational sequence is begun by computing the 
velocity field at time level n utilizing the div-curl equations. The equations are solved subject to the 
specification of one velocity component on each face of the boundary. The numerical scheme for 
solving the vorticity transport equation involves a transformation of the vorticity variable 

where 

The resulting transport equation for 4 takes the form 

The effect of the transformation is to uncouple the components of the pseudovorticity 4 in the 
transport equation. Note that the coupling of the components of the vorticity < remains intact, since the 
solution is advanced in time using (3a), although at time level n, 4 = 4. The vorticity is advanced to 
time level n + 1 using the velocities at time level n and appropriate vorticity boundary conditions. In 
the specification of these boundary conditions all components of vorticity are specified at the boundary 
surfaces. The computed vorticity is then projected onto a new vector space which satisfies the 
requirement that the vorticity vector is solenoidal. The transport equations for K and E are solved in a 
similar manner (although no solenoidal condition need be satisfied). 

3. INITIAL AND BOUNDARY CONDITIONS 

The specification of initial and boundary conditions for the velocity and vorticity vectors follows from 
the earlier work of Spall et al. l6  and Spall and Gatski.17 Briefly, the initial conditions are represented 
by a Burgers vortex, which in non-dimensional form is given by 

The vorticity boundary conditions are derived in part from (14). The radial boundaries are sufficiently 
displaced from the vortex core such that the flow is irrotational and thus the mean vorticity at these 
boundaries is set to zero. At outflow Dirichlet-type conditions on vorticity are obtained from the 
inviscid vorticity transport equation. In the calculations to be presented, the Rossby number was set to 
the supercritical value of 0.9. Consequently, at the radial boundaries a decelerating axial velocity is 
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specified. This specification drives the vortex from supercritical to subcritical at some location 
sufficiently far downstream from the inflow boundary. A hyperbolic tangent function was utilized in 
this study. This is in contrast with the authors’ previous ~ o r k s ’ ~ , ’ ’  on laminar breakdown in which a 
linear deceleration was employed. It was found that the hyperbolic tangent function provided a superior 
means of fixing the axial location of the breakdown within the domain. 

Owing to a lack of experimental data, specification of the boundary conditions for turbulence kinetic 
energy and dissipation rate is somewhat subjective. Chiger and Corsiglia,28 in wind tunnel studies of 
vortices formed by rectangular wings, indicate extremely low levels of turbulence outside the vortex 
core, increasing to reach a maximum at or near the vortex centreline. Consistent with this structure and 
following Bilanin et al.,29 we employ a Gaussian-like distribution for the turbulence kinetic energy at 
the inflow boundary. This distribution is also utilized to specify the initial conditions. The dissipation 
rate is specified, through scaling arguments, as E = K3l2I1, where 1 is taken as the vortex core radius at 
inflow. The complete set of boundary conditions is summarized in Table 1. 

The discretized governing equations were solved over a 75 x 42 x 42 grid (74 cells in the x- 
direction, 41 cells each in the y- and z-directions). The domain was bounded by 0 6 x 6 40, 
0 6 y 6 20 and 0 < z 6 20. The vortex was positioned in the y-z plane so that the initial vortex 
centreline was at y = z = 10. Based upon a comparison of the results for the laminar calculation with 
the authors’ previous  result^'^"' and owing to the fact that the structure of the turbulent breakdown is 

Table I. Summary of boundary conditions 

Inflow 

outflow 

Radial boundaries 

Inflow 

outflow 

Radial boundaries 

Inflow 

outflow 

Radial boundaries 

Inflow 

outflow 

Radial boundaries 

Div-curl equations 

u = l  

&lay + awldz = 0 

u = 1 - 6{1 + tanh [0.25(x - 15)]} 

Turbulence kinetic energy 

K = 0.01 + 0-09 exp 

DKDt = ii * V K  

K = 0-01 

Dissipation rate 

E = K3/’/1 

DdDt = ii - VE 

E = K3/’/1 
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simpler than that of the laminar case (a single recirculation region versus multiple recirculation cells), 
this resolution was deemed sufficient. The scheme is implicit, so there are no numerical constraints on 
the size of the time step At. Thus a time step of 0.2 was used throughout the simulation to march to a 
quasi-steady state. Numerical experimentation with At = 0.1 revealed no significant changes in the 
solution. 

4. RESULTS 

Results are presented and compared for bubble-type breakdown using both the algebraic Reynolds 
stress model and a K--E model. In each case the Reynolds number based on the vortex core radius at 
inflow and freestream axial velocity was 10,000. The results presented represent quasi-steady state 
solutions, i.e. no significant changes in the structure of the bubbles occurred as time evolved. For 
comparative purposes, laminar breakdown calculations at a Reynolds number of 200 are also 
presented. In the figures to follow, the results are presented on the plane z = 10 (i.e. along the vortex 
centreline). 

Some difficulties in making direct comparisons between results obtained using the different 
turbulence models arose owing to the sensitivity of the breakdown process to the parameter 6 (used to 
fix the freestream velocity distribution; see Table I). Results revealed that breakdown for the algebraic 
stress model was obtained for 6 = 0.13, while for the K--E model 6 = 0.21. Note that these are the 
approximate minimum values for bubble-type breakdown to occur for each of the models. Larger 
values produced bubbles of similar shape that grew rapidly, eventually interfering with the lateral 
boundary conditions. Thus it was felt that the most meaningful calculations were obtained by using the 
approximate minimum value of 6 required for breakdown to occur. We note, however, that Spall et 
aL3' compiled results for a large number of experimental and numerical breakdown flow fields which 
highlighted the sensitivity of the process to swirl levels when the nominal Reynolds number is below 
100. Thus, considering the dissipative nature of the K--E turbulence model under swirling flow 
conditions, this behaviour is not unexpected. 

StreamlinesIvelocity vectors for the ARSM and K--E models are shown in Figures l(a) and l(b) 
respectively. These figures indicate that each bubble consists of a single toroidal recirculation zone. 
This is in contrast with the laminar numerical results of Spall et a1.,I6 and the laminar experimental 
results of Faler and Leibovich7 in which the forward portion of the bubble contained one or more 
additional toroidal recirculation zones. However, the primary difference between the results of the two 
turbulence models lies in the overall shape (or envelope) of the bubble. The length/diameter (LID) ratio 
of the bubble produced using the ARSM is approximately 3.25, while for the K--E model LID = 2-25. 
Thus the ARM model produces a longer, more slender breakdown region. This is in accord with the 
observation that linear two-equation models tend to underpredict the length of recirculation zones in 
the standard backward-facing step calculation and indeed for swirling, recirculating flows in general.22 
Thus, although experimental data are not available, the present results are consistent with previous 
numerical calculations for related (confined) flow fields. 

Shown in Figure l(c) are velocity vectors resulting from laminar calculations with the parameter 
6 = 0-13. Note the existence of a more complicated multicell breakdown structure (similar to the 
authors' previous r e s ~ l t s ' ~ ' ' ~  for which a more detailed analysis is presented). The fluid in the forward 
portion of the bubble is quite quiescent, with the primary toroidal vortex appearing in the aft portion of 
the bubble. Compared with the turbulent cases, one also notes that the overall size of the bubble is 
somewhat diminished and that the initial stagnation point occurs hrther upstream. The size differences 
may be due to the fact that the laminar bubble is situated upstream of the region (14 < x < 18) over 
which the axial velocity deceleration takes place along the lateral boundaries. Therefore the laminar 
and turbulent bubbles are subjected to different (large radius) potential flow solutions and one might 
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Figure 1. Streamlines and velocity vectors for vortex breakdown (along vortex centreline): (a) ARSM (Re = 10,000, 6 = 0.13); 
(b) K-E model (Re = 10,000, 6 = 0.21); (c) laminar breakdown (Re = 200, 6 = 0.13) 

expect that a bubble situated in a region of strong adverse pressure gradient would be larger than one 
located in a region where the adverse gradient was diminished. Thus this figure serves to highlight 
some of the primary differences between laminar and turbulent numerical calculations of vortex 
breakdown (subject to the given boundary conditions). 

In Figure 2 we present contours of mean axial velocity for the ARSM. The effects of the freestream 
deceleration are indicated via the contour lines intersecting with the lateral boundaries between x = 14 
and 18. This deceleration acts to centre the bubble in the computational domain, minimizing 
contamination problems with inflow and outflow boundary conditions. Here the initial stagnation point 
is located approximately 10 core radii downstream from the inflow boundary. It is also revealed that the 
bubble is nearly symmetric about the original vortex centreline and that the magnitude of the 
maximum reversed velocity within the bubble is approximately 10% of the freestream axial velocity. 
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Figure 2. Contours of mean axial velocity as computed using ARSM (contour levels from -0.1 to 0.9 in intervals of 0.1) 
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We note that for the K--E model with a value of 6 = 0.13 (equivalent to the value for the ARSM results 
shown here) the minimum velocity along the vortex centreline was approximately 0.35 (thus break- 
down had not occurred). In addition, the maximum velocities within the bubble (in the negative 
x-direction) for the laminar calculations approached 0.55. 

The final mean flow quantity to be examined is the axial vorticity. In Figures 3(a) and 3(b) the 
differences in the vorticity distribution between turbulent breakdown (computed using the ARSM) and 
laminar breakdown are contrasted. The inflow distribution is identical in each case. However, the decay 
in vorticity as a function of streamwise distance takes place much more rapidly for the laminar case. In 
addition, the vorticity distribution is much more complicated within the laminar bubble and regions of 
negative vorticity exist for the laminar case only (indicated by the broken contours). Downstream of 
the breakdown the levels of vorticity in the vortex core are approximately three times higher for 
laminar breakdown than for turbulent breakdown. This indicates that subsequent breakdown bubbles, 
which are often observed downstream of an initial laminar breakdown bubble, are much less likely to 
occur for the turbulent case. 

The spatial distribution of turbulence kinetic energy for the ARSM is shown in Figure 4(a). As 
stated in the previous section, the maximum (fixed) level at inflow is 0.1 and occurs at the vortex 
centreline. The figure reveals a rapid decrease in the kinetic energy as the vortex evolves in the 
streamwise direction. A local minimum is reached at a point just upstream of the breakdown. Within 
the breakdown region a local maximum in turbulence kinetic energy develops, the location of which 
corresponds to the outer portion of the toroidal region of the breakdown (as revealed by the streamlines 
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Figure 3. Contours of axial vorticity: (a) ARSM (contour levels from 0.1 to 1.9 in intervals of 0.1); (b) laminar breakdown 
(contour levels from -0.7 to 1.9 in intervals of 0.2) 
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Figure 4. Contours of constant turbulence kinetic energy: (a) ARSM (contour levels from 0.01 to 0.09 in intervals of 0.00s); 
(b) K--E model (contour levels from 0.1 to 0.09 in intervals of 0.00s) 
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in Figure 1 (a). Downstream of the breakdown the kinetic energy distribution is such that the maximum 
occurs at a radial location off the vortex centreline. Thus the turbulence is damped near the centre of 
the vortex core. We note that qualitatively similar distribution was also implemented as an inflow 
boundary condition in the present study. The results of that calculation showed no significant 
differences in the structure of the resulting breakdown region (compared with the results presented 
herein using the Gaussian distribution of turbulence kinetic energy). Contours of turbulence kinetic 
energy for the K-E model are shown in Figure 4(b). The primary differences between the K-E and 
ARSM appear downstream of the bubble. For instance, the radial gradients in turbulence kinetic 
energy are greater for the ARSM than for the K-E model. 

Contours of constant turbulence dissipation rate E are shown in Figure 5 for the ARSM. The 
distribution of these contours corresponds very closely to those for the turbulence kinetic energy. The 
dissipation rate is high near the inflow region. (For clarity, contours above level 0.01, near the inflow, 
have been excluded.) The dissipation rate decreases continuously, reaching a local minimum near the 
point of the onset of breakdown. A maximum in the dissipation rate also occurs within the toroidal 
recirculation cell, corresponding to the maximum in the turbulence kinetic energy as mentioned in 
regard to Figure 4(a). Downstream of the breakdown region the dissipation rate is quite low, 
corresponding to the continual decrease in turbulence kinetic energy. Results from the K-E model 
follow these general trends. 

Shown in Figure 6 are contributions to the rate of change of turbulence kinetic energy due to the 
production and dissipation terms in equation (9). These quantities are plotted as a function of 
streamwise location. Volume integrals were evaluated at each of the 74 grid cell locations and over all 
the cells in the corresponding y-z plane. The results at each x-station were then normalized by the 
respective volume (i.e. 400Ax). Thus the results are to be interpreted as mean rates of change per unit 
volume. The figure highlights the large increase in the production of turbulence kinetic energy over the 
region of the bubble (10 Q x Q 25). Corresponding to this increase is a slight increase in the 
dissipation, somewhat tempering the overall increases in turbulence kinetic energy. Downstream of the 
bubble a gradual decrease in production and dissipation takes place. 

The ARSM formally constitutes a two-equation turbulence model and employs the concept of an 
eddy viscosity for the diffusion terms in the transport equations for K and E.  In this sense it is useful to 
look at the distribution of the turbulent viscosity (C,K2/&) and C,, where 

and the variables q and C are as previously defined. Figure 7(a) reveals that for the ARSM the turbulent 
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Figure 5.  Contours of turbulence dissipation rate computed using ARSM (contour levels from 0.002 to 0.01 in intervals of 
0.0005) 
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Figure 6 .  Variation in integrated rate of change of production and dissipation of turbulence kinetic energy with axial location 
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Figure 7. (a) Contours of constant turbulent viscosity v, = C,, K2/& for ARSM (contour levels from 0.01 to 0.08 in intervals of 
0.005). (b) Contours of constant C,, for ARSM (contours from 0.04 to 0.1 1 in intervals of 0.005) 
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viscosity varies by a factor of approximately eight over the flow field. Upstream of the breakdown vt 
remains nearly constant (as a function of x). However, the level of v1 begins to rapidly increase 
immediately downstream of the (initial) stagnation point. The maximum levels occur over a region 
corresponding to the outer envelope of the bubble, with levels nearly as high over the entire interior 
bubble region. Downstream of the bubble the levels of vt slowly decrease with respect to increasing x, 
with a local minimum in vt developing along the vortex centreline. Thus the formation of the bubble 
generates high levels of vl and these levels persist for some distance downstream of the breakdown. 

Shown in Figure 7(b) is the spatial variation of C, for the ARSM. Note here that C, is in general 
minimum along the vortex centreline, reaching maximum values outside the vortex core. This is 
because v ,  which is directly related to the strain rate tensor, appears in the numerator of C,, while (, 
related to the rotation rate, appears only in the denominator. Thus near the vortex centreline, where the 
flow approaches a solid body rotation, the strain rate becomes small and the rotation rate becomes 
large. These trends are reversed outside the vortex core. Recall that in the K--E model the value of C, is 
taken as a constant, typically 0.09. Thus in this manner the ARSM provides a means of sensitizing the 
calculations to the effects of rotation through the coefficient C,. However, within the breakdown 
bubble itself the value of C, is increased relative to the levels near the bubble envelope. In essence, a 
local minimum in C, is defined by the region surrounding the bubble envelope. However, levels within 
the bubble remain below those far outside the core. Downstream of the bubble the distribution mirrors 
that occurring upstream of the breakdown, as would be expected (albeit with an expansion in the radial 
direction). 
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5. CONCLUSIONS 

Numerical solutions for turbulent vortex breakdown were obtained using two different turbulence 
models: (1) an algebraic Reynolds stress model and (2) a k--E model. For each model, results revealed 
the formation of a single, nearly symmetric recirculation region. A primary difference between the 
results was the level of freestream deceleration required to initiate breakdown. The minimum required 
value of the deceleration parameter 6 was 0.13 for the ARSM and 0.21 for the K--E model. A possible 
explanation for this concerns the excessive levels of turbulent diffusion inherent in linear two-equation 
turbulence models. In addition, the ARSM produced a bubble with a significantly greater LID ratio. 
These results were contrasted with (present and previous) calculations for laminar bubble-type 
breakdown in which a complicated multicell internal structure resulted. 

The role of stability in the vortex breakdown process has long been debated. The above calculations 
support the idea that although stability is probably not important in the initiation of breakdown, 
stability processes may play an important role in determining the resultant internal structure of the 
breakdown bubble. In the process of attaining the state shown in Figure l(c), the laminar bubble passes 
through a state whose structure is very similar to that of turbulent breakdown (i.e. a single toroidal 
recirculation zone). The idea is that instabilities then render the single-cell structure as a temporary 
state. For the turbulent cases, transport processes may tend to damp out these disturbances. The authors 
plan to study this subject in more detail. 
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